3.513 \(\int \frac {1}{\sqrt {a+b x^3} \sqrt {c+d x^3}} \, dx\)

Optimal. Leaf size=83 \[ \frac {x \sqrt {\frac {b x^3}{a}+1} \sqrt {\frac {d x^3}{c}+1} F_1\left (\frac {1}{3};\frac {1}{2},\frac {1}{2};\frac {4}{3};-\frac {b x^3}{a},-\frac {d x^3}{c}\right )}{\sqrt {a+b x^3} \sqrt {c+d x^3}} \]

[Out]

x*AppellF1(1/3,1/2,1/2,4/3,-b*x^3/a,-d*x^3/c)*(1+b*x^3/a)^(1/2)*(1+d*x^3/c)^(1/2)/(b*x^3+a)^(1/2)/(d*x^3+c)^(1
/2)

________________________________________________________________________________________

Rubi [A]  time = 0.05, antiderivative size = 83, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 2, integrand size = 23, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.087, Rules used = {430, 429} \[ \frac {x \sqrt {\frac {b x^3}{a}+1} \sqrt {\frac {d x^3}{c}+1} F_1\left (\frac {1}{3};\frac {1}{2},\frac {1}{2};\frac {4}{3};-\frac {b x^3}{a},-\frac {d x^3}{c}\right )}{\sqrt {a+b x^3} \sqrt {c+d x^3}} \]

Antiderivative was successfully verified.

[In]

Int[1/(Sqrt[a + b*x^3]*Sqrt[c + d*x^3]),x]

[Out]

(x*Sqrt[1 + (b*x^3)/a]*Sqrt[1 + (d*x^3)/c]*AppellF1[1/3, 1/2, 1/2, 4/3, -((b*x^3)/a), -((d*x^3)/c)])/(Sqrt[a +
 b*x^3]*Sqrt[c + d*x^3])

Rule 429

Int[((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_), x_Symbol] :> Simp[a^p*c^q*x*AppellF1[1/n, -p,
 -q, 1 + 1/n, -((b*x^n)/a), -((d*x^n)/c)], x] /; FreeQ[{a, b, c, d, n, p, q}, x] && NeQ[b*c - a*d, 0] && NeQ[n
, -1] && (IntegerQ[p] || GtQ[a, 0]) && (IntegerQ[q] || GtQ[c, 0])

Rule 430

Int[((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_), x_Symbol] :> Dist[(a^IntPart[p]*(a + b*x^n)^F
racPart[p])/(1 + (b*x^n)/a)^FracPart[p], Int[(1 + (b*x^n)/a)^p*(c + d*x^n)^q, x], x] /; FreeQ[{a, b, c, d, n,
p, q}, x] && NeQ[b*c - a*d, 0] && NeQ[n, -1] &&  !(IntegerQ[p] || GtQ[a, 0])

Rubi steps

\begin {align*} \int \frac {1}{\sqrt {a+b x^3} \sqrt {c+d x^3}} \, dx &=\frac {\sqrt {1+\frac {b x^3}{a}} \int \frac {1}{\sqrt {1+\frac {b x^3}{a}} \sqrt {c+d x^3}} \, dx}{\sqrt {a+b x^3}}\\ &=\frac {\left (\sqrt {1+\frac {b x^3}{a}} \sqrt {1+\frac {d x^3}{c}}\right ) \int \frac {1}{\sqrt {1+\frac {b x^3}{a}} \sqrt {1+\frac {d x^3}{c}}} \, dx}{\sqrt {a+b x^3} \sqrt {c+d x^3}}\\ &=\frac {x \sqrt {1+\frac {b x^3}{a}} \sqrt {1+\frac {d x^3}{c}} F_1\left (\frac {1}{3};\frac {1}{2},\frac {1}{2};\frac {4}{3};-\frac {b x^3}{a},-\frac {d x^3}{c}\right )}{\sqrt {a+b x^3} \sqrt {c+d x^3}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [B]  time = 0.33, size = 170, normalized size = 2.05 \[ -\frac {8 a c x F_1\left (\frac {1}{3};\frac {1}{2},\frac {1}{2};\frac {4}{3};-\frac {b x^3}{a},-\frac {d x^3}{c}\right )}{\sqrt {a+b x^3} \sqrt {c+d x^3} \left (3 x^3 \left (a d F_1\left (\frac {4}{3};\frac {1}{2},\frac {3}{2};\frac {7}{3};-\frac {b x^3}{a},-\frac {d x^3}{c}\right )+b c F_1\left (\frac {4}{3};\frac {3}{2},\frac {1}{2};\frac {7}{3};-\frac {b x^3}{a},-\frac {d x^3}{c}\right )\right )-8 a c F_1\left (\frac {1}{3};\frac {1}{2},\frac {1}{2};\frac {4}{3};-\frac {b x^3}{a},-\frac {d x^3}{c}\right )\right )} \]

Warning: Unable to verify antiderivative.

[In]

Integrate[1/(Sqrt[a + b*x^3]*Sqrt[c + d*x^3]),x]

[Out]

(-8*a*c*x*AppellF1[1/3, 1/2, 1/2, 4/3, -((b*x^3)/a), -((d*x^3)/c)])/(Sqrt[a + b*x^3]*Sqrt[c + d*x^3]*(-8*a*c*A
ppellF1[1/3, 1/2, 1/2, 4/3, -((b*x^3)/a), -((d*x^3)/c)] + 3*x^3*(a*d*AppellF1[4/3, 1/2, 3/2, 7/3, -((b*x^3)/a)
, -((d*x^3)/c)] + b*c*AppellF1[4/3, 3/2, 1/2, 7/3, -((b*x^3)/a), -((d*x^3)/c)])))

________________________________________________________________________________________

fricas [F]  time = 0.70, size = 0, normalized size = 0.00 \[ {\rm integral}\left (\frac {\sqrt {b x^{3} + a} \sqrt {d x^{3} + c}}{b d x^{6} + {\left (b c + a d\right )} x^{3} + a c}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(b*x^3+a)^(1/2)/(d*x^3+c)^(1/2),x, algorithm="fricas")

[Out]

integral(sqrt(b*x^3 + a)*sqrt(d*x^3 + c)/(b*d*x^6 + (b*c + a*d)*x^3 + a*c), x)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {1}{\sqrt {b x^{3} + a} \sqrt {d x^{3} + c}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(b*x^3+a)^(1/2)/(d*x^3+c)^(1/2),x, algorithm="giac")

[Out]

integrate(1/(sqrt(b*x^3 + a)*sqrt(d*x^3 + c)), x)

________________________________________________________________________________________

maple [F]  time = 0.59, size = 0, normalized size = 0.00 \[ \int \frac {1}{\sqrt {b \,x^{3}+a}\, \sqrt {d \,x^{3}+c}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(b*x^3+a)^(1/2)/(d*x^3+c)^(1/2),x)

[Out]

int(1/(b*x^3+a)^(1/2)/(d*x^3+c)^(1/2),x)

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {1}{\sqrt {b x^{3} + a} \sqrt {d x^{3} + c}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(b*x^3+a)^(1/2)/(d*x^3+c)^(1/2),x, algorithm="maxima")

[Out]

integrate(1/(sqrt(b*x^3 + a)*sqrt(d*x^3 + c)), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ \int \frac {1}{\sqrt {b\,x^3+a}\,\sqrt {d\,x^3+c}} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/((a + b*x^3)^(1/2)*(c + d*x^3)^(1/2)),x)

[Out]

int(1/((a + b*x^3)^(1/2)*(c + d*x^3)^(1/2)), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {1}{\sqrt {a + b x^{3}} \sqrt {c + d x^{3}}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(b*x**3+a)**(1/2)/(d*x**3+c)**(1/2),x)

[Out]

Integral(1/(sqrt(a + b*x**3)*sqrt(c + d*x**3)), x)

________________________________________________________________________________________